File: //lib/google-cloud-sdk/lib/googlecloudsdk/command_lib/ai/flags.py
# -*- coding: utf-8 -*- #
# Copyright 2020 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Flags defination for gcloud aiplatform."""
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
import sys
from googlecloudsdk.api_lib.util import apis
from googlecloudsdk.calliope import actions
from googlecloudsdk.calliope import arg_parsers
from googlecloudsdk.calliope import base
from googlecloudsdk.calliope.concepts import concepts
from googlecloudsdk.calliope.concepts import deps
from googlecloudsdk.command_lib.ai import constants
from googlecloudsdk.command_lib.ai import errors
from googlecloudsdk.command_lib.ai import region_util
from googlecloudsdk.command_lib.util.apis import arg_utils
from googlecloudsdk.command_lib.util.concepts import concept_parsers
from googlecloudsdk.core import properties
CUSTOM_JOB_NAME = base.Argument('name', help=('Custom job\'s name to query.'))
CUSTOM_JOB_DISPLAY_NAME = base.Argument(
'--display-name',
required=True,
help=('Display name of the custom job to create.'))
AIPLATFORM_REGION = base.Argument(
'--region',
help=(
'Region of the AI Platform service to use. If not specified, the value '
'of the `ai/region` config property is used. If that property '
'is not configured, then you will be prompted to select a region. When '
'you specify this flag, its value is stored in the `ai/region` '
'config property.'),
action=actions.StoreProperty(properties.VALUES.ai.region))
PYTHON_PACKGE_URIS = base.Argument(
'--python-package-uris',
metavar='PYTHON_PACKAGE_URIS',
type=arg_parsers.ArgList(),
help='The common python package uris that will be used by python image. '
'e.g. --python-package-uri=path1,path2'
'If customizing the python package is needed, please use config instead.')
CUSTOM_JOB_CONFIG = base.Argument(
'--config',
help="""
Path to the job configuration file. This file should be a YAML document containing a CustomJobSpec.
If an option is specified both in the configuration file **and** via command line arguments, the command line arguments
override the configuration file.
Example(YAML):
worker_pool_specs:
machine_spec:
machine_type: n1-highmem-2
replica_count: 1
container_spec:
image_uri: gcr.io/ucaip-test/ucaip-training-test
""")
WORKER_POOL_SPEC = base.Argument(
'--worker-pool-spec',
action='append',
type=arg_parsers.ArgDict(
spec={
'replica-count': int,
'machine-type': str,
'container-image-uri': str,
'python-image-uri': str,
'python-module': str,
},
required_keys=['machine-type']),
metavar='WORKER_POOL_SPEC',
help="""
Define the worker pool configuration used by the custom job. You can specify multiple
worker pool specs in order to create a custom job with multiple worker pools.
The spec can contain the following fields, which are listed with corresponding
fields in the WorkerPoolSpec API message:
*machine-type*::: (Required): machineSpec.machineType
*replica-count*::: replicaCount
*container-image-uri*::: containerSpec.imageUri
*python-image-uri*::: pythonPackageSpec.executorImageUri
*python-module*::: pythonPackageSpec.pythonModule
For example:
`--worker-pool-spec=replica-count=1,machine-type=n1-highmem-2,container-image-uri=gcr.io/ucaip-test/ucaip-training-test`
""")
HPTUNING_JOB_DISPLAY_NAME = base.Argument(
'--display-name',
required=True,
help=('Display name of the hyperparameter tuning job to create.'))
HPTUNING_MAX_TRIAL_COUNT = base.Argument(
'--max-trial-count',
type=int,
default=1,
help=('Desired total number of trials. The default value is 1.'))
HPTUNING_PARALLEL_TRIAL_COUNT = base.Argument(
'--parallel-trial-count',
type=int,
default=1,
help=(
'Desired number of Trials to run in parallel. The default value is 1.'))
HPTUNING_JOB_CONFIG = base.Argument(
'--config',
required=True,
help="""
Path to the job configuration file. This file should be a YAML document containing a HyperparameterTuningSpec.
If an option is specified both in the configuration file **and** via command line arguments, the command line arguments
override the configuration file.
Example(YAML):
displayName: TestHpTuningJob
maxTrialCount: 1
parallelTrialCount: 1
studySpec:
metrics:
- metricId: x
goal: MINIMIZE
parameters:
- parameterId: z
integerValueSpec:
minValue: 1
maxValue: 100
algorithm: RANDOM_SEARCH
trialJobSpec:
workerPoolSpecs:
- machineSpec:
machineType: n1-standard-4
replicaCount: 1
containerSpec:
imageUri: gcr.io/ucaip-test/ucaip-training-test
""")
def AddCreateCustomJobFlags(parser):
"""Adds flags related to create a custom job."""
AddRegionResourceArg(parser, 'to create a custom job')
CUSTOM_JOB_DISPLAY_NAME.AddToParser(parser)
PYTHON_PACKGE_URIS.AddToParser(parser)
worker_pool_spec_group = base.ArgumentGroup(
help='Worker pool specification.', required=True)
worker_pool_spec_group.AddArgument(CUSTOM_JOB_CONFIG)
worker_pool_spec_group.AddArgument(WORKER_POOL_SPEC)
worker_pool_spec_group.AddToParser(parser)
def GetModelIdArg(required=True):
return base.Argument(
'--model',
help='Id of the uploaded model.',
required=required)
def GetDeployedModelId(required=True):
return base.Argument(
'--deployed-model-id',
help='Id of the deployed model.',
required=required)
def GetDisplayNameArg(noun, required=True):
return base.Argument(
'--display-name',
required=required,
help='Display name of the {noun}.'.format(noun=noun))
def GetDescriptionArg(noun):
return base.Argument(
'--description',
required=False,
default=None,
help='Description of the {noun}.'.format(noun=noun))
def AddPredictInstanceArg(parser, required=True):
"""Add arguments for different types of predict instances."""
base.Argument(
'--json-request',
required=required,
help="""\
Path to a local file containing the body of a JSON request.
An example of a JSON request:
{
"instances": [
{"x": [1, 2], "y": [3, 4]},
{"x": [-1, -2], "y": [-3, -4]}
]
}
This flag accepts "-" for stdin.
""").AddToParser(parser)
def GetTrafficSplitArg():
"""Add arguments for traffic split."""
return base.Argument(
'--traffic-split',
metavar='DEPLOYED_MODEL_ID=VALUE',
type=arg_parsers.ArgDict(value_type=int),
action=arg_parsers.UpdateAction,
help=('List of paris of deployed model id and value to set as traffic '
'split.'))
def AddTrafficSplitGroupArgs(parser):
"""Add arguments for traffic split."""
group = parser.add_mutually_exclusive_group(required=False)
group.add_argument(
'--traffic-split',
metavar='DEPLOYED_MODEL_ID=VALUE',
type=arg_parsers.ArgDict(value_type=int),
action=arg_parsers.UpdateAction,
help=('List of paris of deployed model id and value to set as traffic '
'split.'))
group.add_argument(
'--clear-traffic-split',
action='store_true',
help=('Clears the traffic split map. If the map is empty, the endpoint '
'is to not accept any traffic at the moment.'))
def AddPredictionResourcesArgs(parser, version):
"""Add arguments for prediction resources."""
base.Argument(
'--min-replica-count',
required=True,
type=arg_parsers.BoundedInt(1, sys.maxsize, unlimited=True),
help=('Minimum number of machine replicas the deployed model will be '
'always deployed on.')
).AddToParser(parser)
base.Argument(
'--max-replica-count',
type=int,
help=('Maximum number of machine replicas the deployed model will be '
'always deployed on.')
).AddToParser(parser)
# TODO(b/168930155): add the link for available machine types after the docs
# are out.
base.Argument(
'--machine-type',
help="""\
Type of machine on which to serve the model. Currently only applies to online prediction.
If the uploaded models use dedicated resources, the machine type is a required field for deployment.
""").AddToParser(parser)
base.Argument(
'--accelerator',
type=arg_parsers.ArgDict(
spec={
'type': str,
'count': int,
}, required_keys=['type']),
help="""\
Manage the accelerator config for GPU serving. When deploying a model with
Compute Engine Machine Types, a GPU accelerator may also
be selected.
*type*::: The type of the accelerator. Choices are {}.
*count*::: The number of accelerators to attach to each machine running the job.
This is usually 1. If not specified, the default value is 1.
For example:
`--accelerator=type=nvidia-tesla-k80,count=1`""".format(', '.join([
"'{}'".format(c) for c in GetAcceleratorTypeMapper(version).choices
]))).AddToParser(parser)
def RegionAttributeConfig():
return concepts.ResourceParameterAttributeConfig(
name='region',
help_text='Cloud region for the {resource}.',
fallthroughs=[
deps.PropertyFallthrough(properties.VALUES.ai.region),
deps.Fallthrough(function=region_util.PromptForRegion, hint='region')
])
def GetRegionResourceSpec():
return concepts.ResourceSpec(
'aiplatform.projects.locations',
resource_name='region',
locationsId=RegionAttributeConfig(),
projectsId=concepts.DEFAULT_PROJECT_ATTRIBUTE_CONFIG)
def GetModelResourceSpec(resource_name='model'):
return concepts.ResourceSpec(
'aiplatform.projects.locations.models',
resource_name=resource_name,
projectsId=concepts.DEFAULT_PROJECT_ATTRIBUTE_CONFIG,
locationsId=RegionAttributeConfig(),
disable_auto_completers=False)
def AddRegionResourceArg(parser, verb):
"""Add a resource argument for a cloud AI Platform region.
NOTE: Must be used only if it's the only resource arg in the command.
Args:
parser: the parser for the command.
verb: str, the verb to describe the resource, such as 'to update'.
"""
concept_parsers.ConceptParser.ForResource(
'--region',
GetRegionResourceSpec(),
'Cloud region {}.'.format(verb),
required=True).AddToParser(parser)
def AddModelResourceArg(parser, verb):
"""Add a resource argument for a cloud AI Platform model.
NOTE: Must be used only if it's the only resource arg in the command.
Args:
parser: the parser for the command.
verb: str, the verb to describe the resource, such as 'to update'.
"""
name = 'model'
concept_parsers.ConceptParser.ForResource(
name, GetModelResourceSpec(), 'Model {}.'.format(verb),
required=True).AddToParser(parser)
def AddUploadModelFlags(parser):
"""Adds flags for UploadModel."""
AddRegionResourceArg(parser, 'to upload model')
base.Argument(
'--display-name', required=True,
help=('Display name of the model.')).AddToParser(parser)
base.Argument(
'--description', required=False,
help=('Description of the model.')).AddToParser(parser)
base.Argument(
'--container-image-uri',
required=True,
help=("""\
URI of the Model serving container file in the Container Registry
(e.g. gcr.io/myproject/server:latest).
""")).AddToParser(parser)
base.Argument(
'--artifact-uri',
help=("""\
Path to the directory containing the Model artifact and any of its
supporting files.
""")).AddToParser(parser)
parser.add_argument(
'--container-env-vars',
metavar='KEY=VALUE',
type=arg_parsers.ArgDict(),
action=arg_parsers.UpdateAction,
help='List of key-value pairs to set as environment variables.')
parser.add_argument(
'--container-command',
type=arg_parsers.ArgList(),
metavar='COMMAND',
action=arg_parsers.UpdateAction,
help="""\
Entrypoint for the container image. If not specified, the container
image's default entrypoint is run.
""")
parser.add_argument(
'--container-args',
metavar='ARG',
type=arg_parsers.ArgList(),
action=arg_parsers.UpdateAction,
help="""\
Comma-separated arguments passed to the command run by the container
image. If not specified and no `--command` is provided, the container
image's default command is used.
""")
parser.add_argument(
'--container-ports',
metavar='PORT',
type=arg_parsers.ArgList(element_type=arg_parsers.BoundedInt(1, 65535)),
action=arg_parsers.UpdateAction,
help="""\
Container ports to receive requests at. Must be a number between 1 and 65535,
inclusive.
""")
parser.add_argument(
'--container-predict-route',
help='HTTP path to send prediction requests to inside the container.')
parser.add_argument(
'--container-health-route',
help='HTTP path to send health checks to inside the container.')
def GetEndpointId():
return base.Argument('name', help='The endpoint\'s id.')
def GetEndpointResourceSpec(resource_name='endpoint'):
return concepts.ResourceSpec(
constants.ENDPOINTS_COLLECTION,
resource_name=resource_name,
projectsId=concepts.DEFAULT_PROJECT_ATTRIBUTE_CONFIG,
locationsId=RegionAttributeConfig(),
disable_auto_completers=False)
def AddEndpointResourceArg(parser, verb):
"""Add a resource argument for a Cloud AI Platform endpoint.
NOTE: Must be used only if it's the only resource arg in the command.
Args:
parser: the parser for the command.
verb: str, the verb to describe the resource, such as 'to update'.
"""
concept_parsers.ConceptParser.ForResource(
'endpoint',
GetEndpointResourceSpec(),
'The endpoint {}.'.format(verb),
required=True).AddToParser(parser)
def ParseAcceleratorFlag(accelerator, version):
"""Validates and returns a accelerator config message object."""
if accelerator is None:
return None
types = list(c for c in GetAcceleratorTypeMapper(version).choices)
raw_type = accelerator.get('type', None)
if raw_type not in types:
raise errors.ArgumentError("""\
The type of the accelerator can only be one of the following: {}.
""".format(', '.join(["'{}'".format(c) for c in types])))
accelerator_count = accelerator.get('count', 1)
if accelerator_count <= 0:
raise errors.ArgumentError("""\
The count of the accelerator must be greater than 0.
""")
if version == constants.ALPHA_VERSION:
accelerator_msg = (
apis.GetMessagesModule(
constants.AI_PLATFORM_API_NAME,
constants.AI_PLATFORM_API_VERSION[version])
.GoogleCloudAiplatformV1alpha1MachineSpec)
else:
accelerator_msg = (
apis.GetMessagesModule(
constants.AI_PLATFORM_API_NAME,
constants.AI_PLATFORM_API_VERSION[version])
.GoogleCloudAiplatformV1beta1MachineSpec)
accelerator_type = arg_utils.ChoiceToEnum(
raw_type, accelerator_msg.AcceleratorTypeValueValuesEnum)
return accelerator_msg(
acceleratorCount=accelerator_count,
acceleratorType=accelerator_type)
def GetAcceleratorTypeMapper(version):
"""Get a mapper for accelerator type to enum value."""
if version == constants.ALPHA_VERSION:
return arg_utils.ChoiceEnumMapper(
'generic-accelerator',
apis.GetMessagesModule(constants.AI_PLATFORM_API_NAME,
constants.AI_PLATFORM_API_VERSION[version])
.GoogleCloudAiplatformV1beta1MachineSpec.AcceleratorTypeValueValuesEnum,
help_str='The available types of accelerators.',
include_filter=lambda x: x.startswith('NVIDIA'),
required=False)
return arg_utils.ChoiceEnumMapper(
'generic-accelerator',
apis.GetMessagesModule(constants.AI_PLATFORM_API_NAME,
constants.AI_PLATFORM_API_VERSION[version])
.GoogleCloudAiplatformV1beta1MachineSpec.AcceleratorTypeValueValuesEnum,
help_str='The available types of accelerators.',
include_filter=lambda x: x.startswith('NVIDIA'),
required=False)
def AddCreateHpTuningJobFlags(parser, algorithm_enum):
AddRegionResourceArg(parser, 'to upload model')
HPTUNING_JOB_DISPLAY_NAME.AddToParser(parser)
HPTUNING_JOB_CONFIG.AddToParser(parser)
HPTUNING_MAX_TRIAL_COUNT.AddToParser(parser)
HPTUNING_PARALLEL_TRIAL_COUNT.AddToParser(parser)
arg_utils.ChoiceEnumMapper(
'--algorithm',
algorithm_enum,
help_str='Search algorithm specified for the given study. '
).choice_arg.AddToParser(parser)
def GetCustomJobResourceSpec(resource_name='custom_job'):
return concepts.ResourceSpec(
constants.CUSTOM_JOB_COLLECTION,
resource_name=resource_name,
projectsId=concepts.DEFAULT_PROJECT_ATTRIBUTE_CONFIG,
locationsId=RegionAttributeConfig(),
disable_auto_completers=False)
def AddCustomJobResourceArg(parser, verb):
"""Add a resource argument for a Cloud AI Platform custom job.
NOTE: Must be used only if it's the only resource arg in the command.
Args:
parser: the parser for the command.
verb: str, the verb to describe the resource, such as 'to update'.
"""
concept_parsers.ConceptParser.ForResource(
'custom_job',
GetCustomJobResourceSpec(),
'The custom job {}.'.format(verb),
required=True).AddToParser(parser)
def GetHptuningJobResourceSpec(resource_name='hptuning_job'):
return concepts.ResourceSpec(
constants.HPTUNING_JOB_COLLECTION,
resource_name=resource_name,
projectsId=concepts.DEFAULT_PROJECT_ATTRIBUTE_CONFIG,
locationsId=RegionAttributeConfig(),
disable_auto_completers=False)
def AddHptuningJobResourceArg(parser, verb):
"""Add a resource argument for a Cloud AI Platform hyperparameter tuning job.
NOTE: Must be used only if it's the only resource arg in the command.
Args:
parser: the parser for the command.
verb: str, the verb to describe the resource, such as 'to update'.
"""
concept_parsers.ConceptParser.ForResource(
'hptuning_job',
GetHptuningJobResourceSpec(),
'The hyperparameter tuning job {}.'.format(verb),
required=True).AddToParser(parser)