HEX
Server: Apache/2.4.59 (Debian)
System: Linux keymana 4.19.0-21-cloud-amd64 #1 SMP Debian 4.19.249-2 (2022-06-30) x86_64
User: lijunjie (1003)
PHP: 7.4.33
Disabled: pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,
Upload Files
File: //lib/google-cloud-sdk/lib/googlecloudsdk/command_lib/ai/flags.py
# -*- coding: utf-8 -*- #
# Copyright 2020 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Flags defination for gcloud aiplatform."""

from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals

import sys

from googlecloudsdk.api_lib.util import apis

from googlecloudsdk.calliope import actions
from googlecloudsdk.calliope import arg_parsers
from googlecloudsdk.calliope import base
from googlecloudsdk.calliope.concepts import concepts
from googlecloudsdk.calliope.concepts import deps
from googlecloudsdk.command_lib.ai import constants
from googlecloudsdk.command_lib.ai import errors
from googlecloudsdk.command_lib.ai import region_util
from googlecloudsdk.command_lib.util.apis import arg_utils
from googlecloudsdk.command_lib.util.concepts import concept_parsers
from googlecloudsdk.core import properties


CUSTOM_JOB_NAME = base.Argument('name', help=('Custom job\'s name to query.'))
CUSTOM_JOB_DISPLAY_NAME = base.Argument(
    '--display-name',
    required=True,
    help=('Display name of the custom job to create.'))
AIPLATFORM_REGION = base.Argument(
    '--region',
    help=(
        'Region of the AI Platform service to use. If not specified, the value '
        'of the `ai/region` config property is used. If that property '
        'is not configured, then you will be prompted to select a region. When '
        'you specify this flag, its value is stored in the `ai/region` '
        'config property.'),
    action=actions.StoreProperty(properties.VALUES.ai.region))
PYTHON_PACKGE_URIS = base.Argument(
    '--python-package-uris',
    metavar='PYTHON_PACKAGE_URIS',
    type=arg_parsers.ArgList(),
    help='The common python package uris that will be used by python image. '
    'e.g. --python-package-uri=path1,path2'
    'If customizing the python package is needed, please use config instead.')

CUSTOM_JOB_CONFIG = base.Argument(
    '--config',
    help="""
Path to the job configuration file. This file should be a YAML document containing a CustomJobSpec.
If an option is specified both in the configuration file **and** via command line arguments, the command line arguments
override the configuration file.

Example(YAML):

  worker_pool_specs:
    machine_spec:
      machine_type: n1-highmem-2
    replica_count: 1
    container_spec:
      image_uri: gcr.io/ucaip-test/ucaip-training-test
""")

WORKER_POOL_SPEC = base.Argument(
    '--worker-pool-spec',
    action='append',
    type=arg_parsers.ArgDict(
        spec={
            'replica-count': int,
            'machine-type': str,
            'container-image-uri': str,
            'python-image-uri': str,
            'python-module': str,
        },
        required_keys=['machine-type']),
    metavar='WORKER_POOL_SPEC',
    help="""
Define the worker pool configuration used by the custom job. You can specify multiple
worker pool specs in order to create a custom job with multiple worker pools.

The spec can contain the following fields, which are listed with corresponding
fields in the WorkerPoolSpec API message:

*machine-type*::: (Required): machineSpec.machineType
*replica-count*::: replicaCount
*container-image-uri*::: containerSpec.imageUri
*python-image-uri*::: pythonPackageSpec.executorImageUri
*python-module*::: pythonPackageSpec.pythonModule

For example:
`--worker-pool-spec=replica-count=1,machine-type=n1-highmem-2,container-image-uri=gcr.io/ucaip-test/ucaip-training-test`
""")

HPTUNING_JOB_DISPLAY_NAME = base.Argument(
    '--display-name',
    required=True,
    help=('Display name of the hyperparameter tuning job to create.'))

HPTUNING_MAX_TRIAL_COUNT = base.Argument(
    '--max-trial-count',
    type=int,
    default=1,
    help=('Desired total number of trials. The default value is 1.'))

HPTUNING_PARALLEL_TRIAL_COUNT = base.Argument(
    '--parallel-trial-count',
    type=int,
    default=1,
    help=(
        'Desired number of Trials to run in parallel. The default value is 1.'))

HPTUNING_JOB_CONFIG = base.Argument(
    '--config',
    required=True,
    help="""
Path to the job configuration file. This file should be a YAML document containing a HyperparameterTuningSpec.
If an option is specified both in the configuration file **and** via command line arguments, the command line arguments
override the configuration file.

Example(YAML):

  displayName: TestHpTuningJob
  maxTrialCount: 1
  parallelTrialCount: 1
  studySpec:
    metrics:
    - metricId: x
      goal: MINIMIZE
    parameters:
    - parameterId: z
      integerValueSpec:
        minValue: 1
        maxValue: 100
    algorithm: RANDOM_SEARCH
  trialJobSpec:
    workerPoolSpecs:
    - machineSpec:
        machineType: n1-standard-4
      replicaCount: 1
      containerSpec:
        imageUri: gcr.io/ucaip-test/ucaip-training-test
""")


def AddCreateCustomJobFlags(parser):
  """Adds flags related to create a custom job."""
  AddRegionResourceArg(parser, 'to create a custom job')
  CUSTOM_JOB_DISPLAY_NAME.AddToParser(parser)
  PYTHON_PACKGE_URIS.AddToParser(parser)
  worker_pool_spec_group = base.ArgumentGroup(
      help='Worker pool specification.', required=True)
  worker_pool_spec_group.AddArgument(CUSTOM_JOB_CONFIG)
  worker_pool_spec_group.AddArgument(WORKER_POOL_SPEC)
  worker_pool_spec_group.AddToParser(parser)


def GetModelIdArg(required=True):
  return base.Argument(
      '--model',
      help='Id of the uploaded model.',
      required=required)


def GetDeployedModelId(required=True):
  return base.Argument(
      '--deployed-model-id',
      help='Id of the deployed model.',
      required=required)


def GetDisplayNameArg(noun, required=True):
  return base.Argument(
      '--display-name',
      required=required,
      help='Display name of the {noun}.'.format(noun=noun))


def GetDescriptionArg(noun):
  return base.Argument(
      '--description',
      required=False,
      default=None,
      help='Description of the {noun}.'.format(noun=noun))


def AddPredictInstanceArg(parser, required=True):
  """Add arguments for different types of predict instances."""
  base.Argument(
      '--json-request',
      required=required,
      help="""\
      Path to a local file containing the body of a JSON request.

      An example of a JSON request:

          {
            "instances": [
              {"x": [1, 2], "y": [3, 4]},
              {"x": [-1, -2], "y": [-3, -4]}
            ]
          }

      This flag accepts "-" for stdin.
      """).AddToParser(parser)


def GetTrafficSplitArg():
  """Add arguments for traffic split."""
  return base.Argument(
      '--traffic-split',
      metavar='DEPLOYED_MODEL_ID=VALUE',
      type=arg_parsers.ArgDict(value_type=int),
      action=arg_parsers.UpdateAction,
      help=('List of paris of deployed model id and value to set as traffic '
            'split.'))


def AddTrafficSplitGroupArgs(parser):
  """Add arguments for traffic split."""
  group = parser.add_mutually_exclusive_group(required=False)
  group.add_argument(
      '--traffic-split',
      metavar='DEPLOYED_MODEL_ID=VALUE',
      type=arg_parsers.ArgDict(value_type=int),
      action=arg_parsers.UpdateAction,
      help=('List of paris of deployed model id and value to set as traffic '
            'split.'))

  group.add_argument(
      '--clear-traffic-split',
      action='store_true',
      help=('Clears the traffic split map. If the map is empty, the endpoint '
            'is to not accept any traffic at the moment.'))


def AddPredictionResourcesArgs(parser, version):
  """Add arguments for prediction resources."""
  base.Argument(
      '--min-replica-count',
      required=True,
      type=arg_parsers.BoundedInt(1, sys.maxsize, unlimited=True),
      help=('Minimum number of machine replicas the deployed model will be '
            'always deployed on.')
  ).AddToParser(parser)

  base.Argument(
      '--max-replica-count',
      type=int,
      help=('Maximum number of machine replicas the deployed model will be '
            'always deployed on.')
  ).AddToParser(parser)

  # TODO(b/168930155): add the link for available machine types after the docs
  #   are out.
  base.Argument(
      '--machine-type',
      help="""\
Type of machine on which to serve the model. Currently only applies to online prediction.
If the uploaded models use dedicated resources, the machine type is a required field for deployment.
""").AddToParser(parser)

  base.Argument(
      '--accelerator',
      type=arg_parsers.ArgDict(
          spec={
              'type': str,
              'count': int,
          }, required_keys=['type']),
      help="""\
Manage the accelerator config for GPU serving. When deploying a model with
Compute Engine Machine Types, a GPU accelerator may also
be selected.

*type*::: The type of the accelerator. Choices are {}.

*count*::: The number of accelerators to attach to each machine running the job.
 This is usually 1. If not specified, the default value is 1.

For example:
`--accelerator=type=nvidia-tesla-k80,count=1`""".format(', '.join([
    "'{}'".format(c) for c in GetAcceleratorTypeMapper(version).choices
  ]))).AddToParser(parser)


def RegionAttributeConfig():
  return concepts.ResourceParameterAttributeConfig(
      name='region',
      help_text='Cloud region for the {resource}.',
      fallthroughs=[
          deps.PropertyFallthrough(properties.VALUES.ai.region),
          deps.Fallthrough(function=region_util.PromptForRegion, hint='region')
      ])


def GetRegionResourceSpec():
  return concepts.ResourceSpec(
      'aiplatform.projects.locations',
      resource_name='region',
      locationsId=RegionAttributeConfig(),
      projectsId=concepts.DEFAULT_PROJECT_ATTRIBUTE_CONFIG)


def GetModelResourceSpec(resource_name='model'):
  return concepts.ResourceSpec(
      'aiplatform.projects.locations.models',
      resource_name=resource_name,
      projectsId=concepts.DEFAULT_PROJECT_ATTRIBUTE_CONFIG,
      locationsId=RegionAttributeConfig(),
      disable_auto_completers=False)


def AddRegionResourceArg(parser, verb):
  """Add a resource argument for a cloud AI Platform region.

  NOTE: Must be used only if it's the only resource arg in the command.

  Args:
    parser: the parser for the command.
    verb: str, the verb to describe the resource, such as 'to update'.
  """
  concept_parsers.ConceptParser.ForResource(
      '--region',
      GetRegionResourceSpec(),
      'Cloud region {}.'.format(verb),
      required=True).AddToParser(parser)


def AddModelResourceArg(parser, verb):
  """Add a resource argument for a cloud AI Platform model.

  NOTE: Must be used only if it's the only resource arg in the command.

  Args:
    parser: the parser for the command.
    verb: str, the verb to describe the resource, such as 'to update'.
  """
  name = 'model'
  concept_parsers.ConceptParser.ForResource(
      name, GetModelResourceSpec(), 'Model {}.'.format(verb),
      required=True).AddToParser(parser)


def AddUploadModelFlags(parser):
  """Adds flags for UploadModel."""
  AddRegionResourceArg(parser, 'to upload model')
  base.Argument(
      '--display-name', required=True,
      help=('Display name of the model.')).AddToParser(parser)
  base.Argument(
      '--description', required=False,
      help=('Description of the model.')).AddToParser(parser)
  base.Argument(
      '--container-image-uri',
      required=True,
      help=("""\
URI of the Model serving container file in the Container Registry
(e.g. gcr.io/myproject/server:latest).
""")).AddToParser(parser)
  base.Argument(
      '--artifact-uri',
      help=("""\
Path to the directory containing the Model artifact and any of its
supporting files.
""")).AddToParser(parser)
  parser.add_argument(
      '--container-env-vars',
      metavar='KEY=VALUE',
      type=arg_parsers.ArgDict(),
      action=arg_parsers.UpdateAction,
      help='List of key-value pairs to set as environment variables.')
  parser.add_argument(
      '--container-command',
      type=arg_parsers.ArgList(),
      metavar='COMMAND',
      action=arg_parsers.UpdateAction,
      help="""\
Entrypoint for the container image. If not specified, the container
image's default entrypoint is run.
""")
  parser.add_argument(
      '--container-args',
      metavar='ARG',
      type=arg_parsers.ArgList(),
      action=arg_parsers.UpdateAction,
      help="""\
Comma-separated arguments passed to the command run by the container
image. If not specified and no `--command` is provided, the container
image's default command is used.
""")
  parser.add_argument(
      '--container-ports',
      metavar='PORT',
      type=arg_parsers.ArgList(element_type=arg_parsers.BoundedInt(1, 65535)),
      action=arg_parsers.UpdateAction,
      help="""\
Container ports to receive requests at. Must be a number between 1 and 65535,
inclusive.
""")
  parser.add_argument(
      '--container-predict-route',
      help='HTTP path to send prediction requests to inside the container.')
  parser.add_argument(
      '--container-health-route',
      help='HTTP path to send health checks to inside the container.')


def GetEndpointId():
  return base.Argument('name', help='The endpoint\'s id.')


def GetEndpointResourceSpec(resource_name='endpoint'):
  return concepts.ResourceSpec(
      constants.ENDPOINTS_COLLECTION,
      resource_name=resource_name,
      projectsId=concepts.DEFAULT_PROJECT_ATTRIBUTE_CONFIG,
      locationsId=RegionAttributeConfig(),
      disable_auto_completers=False)


def AddEndpointResourceArg(parser, verb):
  """Add a resource argument for a Cloud AI Platform endpoint.

  NOTE: Must be used only if it's the only resource arg in the command.

  Args:
    parser: the parser for the command.
    verb: str, the verb to describe the resource, such as 'to update'.
  """
  concept_parsers.ConceptParser.ForResource(
      'endpoint',
      GetEndpointResourceSpec(),
      'The endpoint {}.'.format(verb),
      required=True).AddToParser(parser)


def ParseAcceleratorFlag(accelerator, version):
  """Validates and returns a accelerator config message object."""
  if accelerator is None:
    return None
  types = list(c for c in GetAcceleratorTypeMapper(version).choices)
  raw_type = accelerator.get('type', None)
  if raw_type not in types:
    raise errors.ArgumentError("""\
The type of the accelerator can only be one of the following: {}.
""".format(', '.join(["'{}'".format(c) for c in types])))
  accelerator_count = accelerator.get('count', 1)
  if accelerator_count <= 0:
    raise errors.ArgumentError("""\
The count of the accelerator must be greater than 0.
""")
  if version == constants.ALPHA_VERSION:
    accelerator_msg = (
        apis.GetMessagesModule(
            constants.AI_PLATFORM_API_NAME,
            constants.AI_PLATFORM_API_VERSION[version])
        .GoogleCloudAiplatformV1alpha1MachineSpec)
  else:
    accelerator_msg = (
        apis.GetMessagesModule(
            constants.AI_PLATFORM_API_NAME,
            constants.AI_PLATFORM_API_VERSION[version])
        .GoogleCloudAiplatformV1beta1MachineSpec)
  accelerator_type = arg_utils.ChoiceToEnum(
      raw_type, accelerator_msg.AcceleratorTypeValueValuesEnum)
  return accelerator_msg(
      acceleratorCount=accelerator_count,
      acceleratorType=accelerator_type)


def GetAcceleratorTypeMapper(version):
  """Get a mapper for accelerator type to enum value."""
  if version == constants.ALPHA_VERSION:
    return arg_utils.ChoiceEnumMapper(
        'generic-accelerator',
        apis.GetMessagesModule(constants.AI_PLATFORM_API_NAME,
                               constants.AI_PLATFORM_API_VERSION[version])
        .GoogleCloudAiplatformV1beta1MachineSpec.AcceleratorTypeValueValuesEnum,
        help_str='The available types of accelerators.',
        include_filter=lambda x: x.startswith('NVIDIA'),
        required=False)
  return arg_utils.ChoiceEnumMapper(
      'generic-accelerator',
      apis.GetMessagesModule(constants.AI_PLATFORM_API_NAME,
                             constants.AI_PLATFORM_API_VERSION[version])
      .GoogleCloudAiplatformV1beta1MachineSpec.AcceleratorTypeValueValuesEnum,
      help_str='The available types of accelerators.',
      include_filter=lambda x: x.startswith('NVIDIA'),
      required=False)


def AddCreateHpTuningJobFlags(parser, algorithm_enum):
  AddRegionResourceArg(parser, 'to upload model')
  HPTUNING_JOB_DISPLAY_NAME.AddToParser(parser)
  HPTUNING_JOB_CONFIG.AddToParser(parser)
  HPTUNING_MAX_TRIAL_COUNT.AddToParser(parser)
  HPTUNING_PARALLEL_TRIAL_COUNT.AddToParser(parser)

  arg_utils.ChoiceEnumMapper(
      '--algorithm',
      algorithm_enum,
      help_str='Search algorithm specified for the given study. '
  ).choice_arg.AddToParser(parser)


def GetCustomJobResourceSpec(resource_name='custom_job'):
  return concepts.ResourceSpec(
      constants.CUSTOM_JOB_COLLECTION,
      resource_name=resource_name,
      projectsId=concepts.DEFAULT_PROJECT_ATTRIBUTE_CONFIG,
      locationsId=RegionAttributeConfig(),
      disable_auto_completers=False)


def AddCustomJobResourceArg(parser, verb):
  """Add a resource argument for a Cloud AI Platform custom job.

  NOTE: Must be used only if it's the only resource arg in the command.

  Args:
    parser: the parser for the command.
    verb: str, the verb to describe the resource, such as 'to update'.
  """
  concept_parsers.ConceptParser.ForResource(
      'custom_job',
      GetCustomJobResourceSpec(),
      'The custom job {}.'.format(verb),
      required=True).AddToParser(parser)


def GetHptuningJobResourceSpec(resource_name='hptuning_job'):
  return concepts.ResourceSpec(
      constants.HPTUNING_JOB_COLLECTION,
      resource_name=resource_name,
      projectsId=concepts.DEFAULT_PROJECT_ATTRIBUTE_CONFIG,
      locationsId=RegionAttributeConfig(),
      disable_auto_completers=False)


def AddHptuningJobResourceArg(parser, verb):
  """Add a resource argument for a Cloud AI Platform hyperparameter tuning  job.

  NOTE: Must be used only if it's the only resource arg in the command.

  Args:
    parser: the parser for the command.
    verb: str, the verb to describe the resource, such as 'to update'.
  """
  concept_parsers.ConceptParser.ForResource(
      'hptuning_job',
      GetHptuningJobResourceSpec(),
      'The hyperparameter tuning job {}.'.format(verb),
      required=True).AddToParser(parser)