File: //lib/google-cloud-sdk/lib/surface/ai/endpoints/deploy_model.py
# -*- coding: utf-8 -*- #
# Copyright 2020 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""AI Platform endpoints deploy-model command."""
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
from apitools.base.py import encoding
from googlecloudsdk.api_lib.ai import operations
from googlecloudsdk.api_lib.ai.endpoints import client
from googlecloudsdk.calliope import base
from googlecloudsdk.command_lib.ai import constants
from googlecloudsdk.command_lib.ai import endpoint_util
from googlecloudsdk.command_lib.ai import endpoints_util
from googlecloudsdk.command_lib.ai import flags
from googlecloudsdk.command_lib.ai import operations_util
from googlecloudsdk.command_lib.ai import validation
from googlecloudsdk.core import log
def _AddArgs(parser, version):
flags.AddEndpointResourceArg(parser, 'to deploy a model to')
flags.GetModelIdArg().AddToParser(parser)
flags.GetDisplayNameArg('deployed model').AddToParser(parser)
flags.GetTrafficSplitArg().AddToParser(parser)
flags.AddPredictionResourcesArgs(parser, version)
def _Run(args, version):
"""Deploy a model to an existing AI Platform endpoint."""
validation.ValidateDisplayName(args.display_name)
endpoint_ref = args.CONCEPTS.endpoint.Parse()
args.region = endpoint_ref.AsDict()['locationsId']
with endpoint_util.AiplatformEndpointOverrides(version, region=args.region):
endpoints_client = client.EndpointsClient(version=version)
operation_client = operations.OperationsClient()
op = endpoints_client.DeployModelBeta(endpoint_ref, args)
response_msg = operations_util.WaitForOpMaybe(
operation_client, op, endpoints_util.ParseOperation(op.name))
if response_msg is not None:
response = encoding.MessageToPyValue(response_msg)
if 'deployedModel' in response and 'id' in response['deployedModel']:
log.status.Print(('Deployed a model to the endpoint {}. '
'Id of the deployed model: {}.').format(
endpoint_ref.AsDict()['endpointsId'],
response['deployedModel']['id']))
return response_msg
@base.ReleaseTracks(base.ReleaseTrack.BETA, base.ReleaseTrack.ALPHA)
class DeployModelBeta(base.Command):
"""Deploy a model to an existing AI Platform endpoint."""
@staticmethod
def Args(parser):
_AddArgs(parser, constants.BETA_VERSION)
def Run(self, args):
_Run(args, constants.BETA_VERSION)